OPTIMIZING K-MEANS ALGORITHM WITH ELBOW AND SILHOUETTE METHODS FOR NATIONAL EXAM SCORE DATA CLUSTERING
Keywords:
Data Mining, Elbow, Silhouette, K-Means, ClusteringAbstract
The national examination is an evaluation system for basic education standarts that supports student graduation. In accordance with the regulations of the Government of the Republic Indonesia, the evaluation of learning outcomes aims to evaluate the achievement of national graduate students. As the data obtained by the author, namely the National Vocational Exam Value Data for the Vocational High School in Central Java Province for the class of 2019. But the data displayed is still random and less information. Then data mining techniques are needed to classify which schools is carried out using the k-means clustering method and using elbow and silhouette optimization, with optimum k obtained K=3 and K=2 with calculations using RStudio tools. It is expected to produce the best cluster for the grouping
References
Budiman, I., Prahasto, T., & Christyono, Y. (2014). Data Clustering Menggunakan Metodologi CRISP-DM Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma. Jurnal Sistem Informasi Bisnis, 1(3), 15–16. https://doi.org/10.21456/vol1iss3pp129-134
Ekasetya, V. A. (2020). OPTIMASI K-MEANS CLUSTERING MENGGUNAKAN METODE ELBOW PADA SEGMENTASI KECELAKAAN SEMARANG.
Febrianti, F., Hafiyusholeh, M., & Asyhar, A. H. (2016). Perbandingan Pengklusteran Data Iris Menggunakan Metode K-Means Dan Fuzzy C-Means. Jurnal Matematika “MANTIK,” 2(1), 7. https://doi.org/10.15642/mantik.2016.2.1.7-1
Izzadin, F. M. (2020). OPTIMASI JUMLAH CLUSTER K-MEANS DENGAN METODE ELBOW DAN SILHOUETTE PADA PRODUKTIVITAS TANAMAN PANGAN DI PROVINSI JAWA TENGAH TAHUN 2018. Yogyakarta : Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Indonesia.
Kementrian Pendidikan dan Budaya 2021. "LAPORAN HASIL UJIAN NASIONAL" http://hasilun.puspendik.kemdikbud.go.id/ diakses pada 21 Juli 2020.
Muliono, R., & Sembiring, Z. (2019). Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen. 4(2), 2502–2714.
Muningsih, E., & Yogyakarta, A. B. S. I. (2017). Optimasi jumlah cluster k-means dengan metode elbow untuk pemetaan pelanggan. Prosiding Seminar Nasional ELINVO, September, 105–114.
Setyadi .F. 2020. "Metodologi CRISP-DM Beserta Contoh Kasusnya". https://flinsetyadi.com/metodologi-crisp-dm-beserta-contoh-kasusnya/. diakses pada 24 Juni 2021.
Simbolon, C. L., Kusumastuti, N., & Irawan, B. (2013). Clustering lulusan mahasiswa matematika fmipa untan pontianak menggunakan algoritma fuzzy c - means. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 02(1), 21–26.
Wikipedia 2020. "Ujian Nasional". https://id.wikipedia.org/wiki/Ujian_Nasional. diakses pada 11 Juni 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Ilmu Komputer Ruru

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

