PERBANDINGAN ALGORITMA C5.0 DAN REGRESI LINEAR UNTUK PREDIKSI KELULUSAN MAHASISWA

Authors

  • Petti Sijabat STMIK Pelita Nusantara Author
  • Agustina Simangunsong STMIK Pelita Nusantara Author

Keywords:

Graduation Prediction, C5.0 Algorithm, Linear Regression

Abstract

Technological advances supported by human knowledge have a very good influence on data and information storage technology, including in predicting student graduation (Graduation Prediction) on time, by applying several existing algorithms. In this study, researchers used the C5.0 Algorithm and Linear Regression. The concept of the research is to compare two algorithms, namely C5.0 and Linear Regression to the case of graduating students on time. Based on the length of study, students who graduated correctly amounted to 651 (91%) with a male gender of 427 students and a female gender of 224 students while those who did not pass (late) correctly amounted to 64 (9%) with a male gender totaling 53 students and female gender totaling 11 students from 2017-2020. Comparison results The R2 score from the C5.0 algorithm reached 96.85% (training) and 93.72% (testing) while the R2 score from the Linear Regression reached 33.31% (training) and 40.30% (testing).

References

D. S. O. Panggabean, E. Buulolo, and N. Silalahi, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 56, 2020, doi: 10.30865/jurikom.v7i1.1947.

E. Setiawan, D. Antoni, and A. H. Mirza, “Analisis Penerimaan Sistem Ujian Online Berbayar Dengan Menggunakan Metode Technology Acceptance Model (Tam) Dan Webqual,” J. Bina Komput., vol. 1, no. 1, pp. 61–72, 2019, doi: 10.33557/binakomputer.v1i1.155.

A. A. Murtopo, “Prediksi Kelulusan Tepat Waktu Mahasiswa STMIK YMI Tegal Menggunakan Algoritma Naïve Bayes,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 7, no. 3, p. 145, 2016, doi: 10.22303/csrid.7.3.2015.145-154.

A. Y. Saputra and Y. Primadasa, “Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” Techno.Com, vol. 17, no. 4, pp. 395–403, 2018, doi: 10.33633/tc.v17i4.1864.

M. Kamil and W. Cholil, “Analisis Perbandingan Algoritma C4.5 dan Naive Bayes pada Lulusan Tepat Waktu Mahasiswa di Universitas Islam Negeri Raden Fatah Palembang,” J. Inform., vol. 7, no. 2, pp. 97–106, 2020, doi: 10.31294/ji.v7i2.7723.

L. R. Haidar, E. Sediyono, and A. Iriani, “Analisa Prediksi Mahasiswa Drop Out Menggunakan Metode Decision Tree Dengan Algoritma ID3 dan C4.5,” J. Transform., vol. 17, no. 2, p. 97, 2020, doi: 10.26623/transformatika.v17i2.1609.

Mashlahah, Prediksi Kelulusan Mahasiswa Menggunakan Metode Decision Tree Dengan Penerapan Algoritma C4.5, 2013th ed. Malang: Universitas Islam Negeri Maulana Malik Ibrahim, 2013.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

K. P. Wirdhaningsih, M. Ratnawati, Dian Eka, U. B. Malang, D. Mining, and D. Tree, Penerapan Algoritma Decision Tree C5.0 Untuk Peramalan Forex, 2013th ed. Malang: Universitas Brawijaya Malang, 2013.

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 364, 2019, doi: 10.22146/jnteti.v8i4.537.

Downloads

Published

2024-07-30

Issue

Section

Articles

How to Cite

PERBANDINGAN ALGORITMA C5.0 DAN REGRESI LINEAR UNTUK PREDIKSI KELULUSAN MAHASISWA. (2024). Jurnal Ilmu Komputer Ruru, 1(2), 52-59. https://journal.lintasgenerasi.com/index.php/JIKR/article/view/16